Promising Practices Promising PracticesPromising Practices
A forum for government's best ideas and most innovative leaders.

Brown Fat, White Fat, Good Fat, Bad Fat

Patrick Seale, University of Pennsylvania School of Medicine Patrick Seale, University of Pennsylvania School of Medicine Brown fat cells (stained brown with antibodies against the brown fat-specific protein Ucp1) nestled in amongst white fat cells.

Fat has been villainized; but all fat was not created equal. Our two main types of fat—brown and white—play different roles. Now, two teams of NIH-funded researchers have enriched our understanding of adipose tissue. The first team discovered the genetic switch that triggers the development of brown fat, and the second figured out how the body can recruit white fat and transform it into brown.

Why would we want to change white fat into brown? White fat stores energy as large fat droplets, while brown fat has much smaller droplets and is specialized to burn them, yielding heat. Brown fat cells are packed with energy generating powerhouses called mitochondria that contain iron—which gives them their brown color. Infants are born with rich stores of brown fat (about 5 percent of total body mass) on the upper spine and shoulders to keep them warm. It used to be thought that brown fat disappeared by adulthood—but it turns out we harbor small reserves in our shoulders and neck.

In mice, brown fat does something remarkable: it burns more calories when mice are overfed, protecting them from obesity. (Don’t you wish eating a plate of fries did that for you?) Furthermore, mice genetically predisposed to have with extra brown fat are actually leaner and healthier. In humans, there is evidence that more brown fat is associated with a lower body weight. So, how might we increase our brown fat production?

The team led by the University of Pennsylvania figured out the switch for creating a brown fat cell—a protein called early B cell factor-2 (Ebf2). Comparing the active genes in brown and white fat cells, they discovered Ebf2 is present in larger quantities in brown fat. This protein seems to mark which genes will later be turned on to transform certain types of precursor cells into brown fat. When the team engineered mice lacking this protein, the animals had white fat cells on their upper back and spine rather than the typical brown. When the team expressed high levels of Ebf2 in white fat, these cells turned brown and consumed more oxygen—a sign they were producing more heat.

The second team, led by Harvard’s Joslin Diabetes Center, noted that mice have two types of brown fat: constitutive brown fat, which they have from birth, and “recruitable” brown fat, scattered throughout the muscles and white fat. When researchers engineered mice lacking a protein called Type 1A BMP-receptor (BMPR1A)—which is needed for the correct development of brown fat—the mice were born with just a tiny bit of constitutive brown fat on their back.

You would think that these mice would be terribly cold. Surprisingly, they kept a normal body temperature. How did they manage this feat?

The lack of brown fat apparently sends a signal via the brain to the recruitable fat cells, telling them to make the switch and transform into brown fat. The mice stayed warm, and the recruited brown fat even protected them from obesity.

In humans, too much abdominal white fat promotes heart disease, diabetes, and many other metabolic diseases. It would be potentially therapeutic if we could transform some of our white fat into brown. Determining which genes control the development of white and brown fat may be the first step toward developing game changing treatments for diabetes and obesity.

NIH funding: the National Institute of Diabetes and Digestive and Kidney Diseases; and the National Institute of General Medical Sciences

Francis S. Collins, M.D., Ph.D. is the Director of the National Institutes of Health (NIH). In that role he oversees the work of the largest supporter of biomedical research in the world, spanning the spectrum from basic to clinical research. Dr. Collins is a physician-geneticist noted for his landmark discoveries of disease genes and his leadership of the international Human Genome Project, which culminated in April 2003 with the completion of a finished sequence of the human DNA instruction book. He served as director of the National Human Genome Research Institute at the NIH from 1993-2008.

Close [ x ] More from GovExec

Thank you for subscribing to newsletters from
We think these reports might interest you:

  • Sponsored by Brocade

    Best of 2016 Federal Forum eBook

    Earlier this summer, Federal and tech industry leaders convened to talk security, machine learning, network modernization, DevOps, and much more at the 2016 Federal Forum. This eBook includes a useful summary highlighting the best content shared at the 2016 Federal Forum to help agencies modernize their network infrastructure.

  • Sponsored by CDW-G

    GBC Flash Poll Series: Merger & Acquisitions

    Download this GBC Flash Poll to learn more about federal perspectives on the impact of industry consolidation.

  • Sponsored by One Identity

    One Nation Under Guard: Securing User Identities Across State and Local Government

    In 2016, the government can expect even more sophisticated threats on the horizon, making it all the more imperative that agencies enforce proper identity and access management (IAM) practices. In order to better measure the current state of IAM at the state and local level, Government Business Council (GBC) conducted an in-depth research study of state and local employees.

  • Sponsored by Aquilent

    The Next Federal Evolution of Cloud

    This GBC report explains the evolution of cloud computing in federal government, and provides an outlook for the future of the cloud in government IT.

  • Sponsored by Aquilent

    A DevOps Roadmap for the Federal Government

    This GBC Report discusses how DevOps is steadily gaining traction among some of government's leading IT developers and agencies.

  • Sponsored by LTC Partners, administrators of the Federal Long Term Care Insurance Program

    Approaching the Brink of Federal Retirement

    Approximately 10,000 baby boomers are reaching retirement age per day, and a growing number of federal employees are preparing themselves for the next chapter of their lives. Learn how to tackle the challenges that today's workforce faces in laying the groundwork for a smooth and secure retirement.

  • Sponsored by Hewlett Packard Enterprise

    Cyber Defense 101: Arming the Next Generation of Government Employees

    Read this issue brief to learn about the sector's most potent challenges in the new cyber landscape and how government organizations are building a robust, threat-aware infrastructure

  • Sponsored by Aquilent

    GBC Issue Brief: Cultivating Digital Services in the Federal Landscape

    Read this GBC issue brief to learn more about the current state of digital services in the government, and how key players are pushing enhancements towards a user-centric approach.

  • Sponsored by CDW-G

    Joint Enterprise Licensing Agreements

    Read this eBook to learn how defense agencies can achieve savings and efficiencies with an Enterprise Software Agreement.

  • Sponsored by Cloudera

    Government Forum Content Library

    Get all the essential resources needed for effective technology strategies in the federal landscape.


When you download a report, your information may be shared with the underwriters of that document.