DHS aims to spur innovation in radiation detection

Office is asking universities to work on finding shielded material, detecting material at greater distances, miniaturizing detectors and improving analysis.

When Charles Ferguson was studying for his doctorate in the early 1990s, the science of radiation detection and the basic physics behind it were not particularly sexy topics.

"That was considered sort of ho-hum," said Ferguson, a physicist and now a fellow with the Council on Foreign Relations. "There wasn't really a strong motivation for talented young scientists to study these subjects."

Following Sept. 11, 2001, however, detecting radiation took on a new immediacy. Radiation detectors were no longer needed just to stop contaminated scrap metal from ruining industrial processing equipment or making sure nothing radioactive from inside a nuclear power plant ended up outside.

As the United States recovered from spectacular strikes against the World Trade Center and the Pentagon, concerns grew about what could be the most devastating terrorism scenario -- detonation of a stolen or improvised nuclear weapon. Radiation detection technology would likely play an integral role in catching a nuclear weapon or nuclear material before it could be used in such an attack.

The Domestic Nuclear Detection Office was created two years ago within the Homeland Security Department, which was itself formed in the aftermath of Sept. 11. Part of its mission, in addition to developing a web of radiation detection to safeguard the United States from a smuggled nuclear weapon, is pushing forward detection technology through "an aggressive … and transformational" program of research and development.

To a certain extent, however, the mental capital to develop that technology was lacking. People were not paying attention to this challenge, at least not in the way that the post-Sept. 11 world seemed to demand.

"People had been concerned at the national labs about monitoring special nuclear material, but it wasn't until terrorism reared its ugly head that people began to get concerned about the ultimate terrorist attack, which is a loose nuke," said David Wehe, a nuclear engineering professor at the University of Michigan who studies radiation detection. "We need the intellectual horsepower to come along and solve these things," he said.

Detecting radioactive scrap metal is one thing but detecting the low activity nuclear material that could fuel fission weapons is something else altogether.

"That's a huge challenge," Wehe said, noting the materials do not produce much of a radioactive signature. "I don't know if you were ever on a nuclear submarine but people sleep next to these things. A nuclear-tipped torpedo could be on the bunk above you."

Since the devastating twin blows to nuclear power of Three Mile Island and Chernobyl, and later the end of a Cold War focus on nuclear one-upmanship, there has been a decline in both the number of nuclear engineering departments and nuclear engineering students in the United States, said William Hagan, assistant director of transformation research and development at the Domestic Nuclear Detection Office.

"That has led of course to fewer students going into the field, fewer students graduating and therefore fewer people available in general," he said during a recent interview.

Nearly six years later after Sept. 11, that gap is still outstanding.

"We didn't have the huge group of people we felt we needed right after Sept. 11 to really pay attention to these issues, so even six years after Sept. 11 we still have this lag," Ferguson said.

Now the Domestic Nuclear Detection Office is doing what it can to address that lag, by providing $58 million over five years to academic institutions digging into the problems of radiation detection.

Jump-Starting Academia

The Academic Research Initiative, designed with input from the academic community it is aimed to invigorate, is being run jointly by the Domestic Nuclear Detection Office and the National Science Foundation. The recipients of the first grants have already been selected but not yet publicly identified.

In fiscal 2007, the first year of the program, Hagan's office plans to hand out roughly $8 million to fund research programs that would operate from three to five years. The largest research programs could take up to five years and receive up to $7.5 million over their spans.

The Domestic Nuclear Detection Office is looking for universities to work on detecting shielded material, detecting material at greater distances, miniaturizing detectors as well as more effectively analyzing the data streaming back from the devices.

"We've got to deal with this sort of languishing of technology that has happened over the past couple of decades," Hagan said. "I think we're already starting to snap out of that."

While Hagan's office tries to spread its attention over the three constituencies that make up the research community -- the national laboratories, private industry and the universities -- the academic community offers particular opportunities for innovation, he said.

Universities can be the places where outlandish and unlikely solutions to problems can emerge, solutions that might not come to fruition in a more conservative, profit-minded industrial atmosphere or in the national laboratories.

The idea with the Academic Research Initiative "was we want this to be very unrestrictive," Hagan said. "We want this to be very innovative. We want this to be things that a company may not think of because it's too far out."

Hagan is hoping the program results in some unconventional thinking that provides the next step forward in technology. Even if it does not, it would hopefully produce graduates "intellectually engaged and familiar with the kinds of problems and the technologies that are relevant to our mission," he said. "It takes a while to get going, to get some momentum."

Moving Forward

"They're stuck," said Richard Lanza, a senior research scientist in the nuclear science and engineering department at the Massachusetts Institute of Technology. "Most of the detectors that we're using are stuff that was around 20 years ago," Lanza said. The science of radiation detection has not been moving forward in leaps and bounds, he said, suggesting need for a "longer-term look at the fundamentals."

Even the new Advanced Spectroscopic Portal monitors, which the Homeland Security Department is pushing to deploy at the cost of more than $1 billion, use older detection materials such as sodium iodide and germanium, said Wehe, the Michigan nuclear scientist.

"There's no breakthrough there in terms of material of science," he said.

The new monitors analyze signals more effectively to pinpoint what isotopes the detectors are detecting, but the basic science behind the device is nothing new. Significantly transforming the technology and science used to detect radiation sources will take a tremendous effort, Wehe said.

Bright students are looking for just such a challenge, he said. "I think what young people are looking for is an interesting technical question. The fact that the application is homeland security is a good thing."

To hear Wehe tell it, the challenge of radiation detection is so significant that the solutions might come from far left field.

"I've been at workshops where people are looking at crazy things like training honey bees to hunt for special nuclear materials," he said.

This was not a science fiction conference either. There were serious scientists there from national laboratories and federal agencies. "It was called informally the out of the box conference, but most of us were calling it the out of your mind conference," he said.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.