Promising Practices Promising PracticesPromising Practices
A forum for government's best ideas and most innovative leaders.

NIH Finds Sleep Gene Linked to Migraines

ARCHIVES
Image via Peter Bernik/Shutterstock.com

Migraines—pounding headaches sometimes preceded by a visual “aura,” and often coupled with vomiting, nausea, distorted vision, and hypersensitivity to sound and touch—can be highly debilitating if recurrent and prolonged. They affect millions of Americans and an estimated 10–20 percent of the global population. Yet what predisposes individuals to them is somewhat of a mystery. Though there are certainly environmental triggers, the tendency for migraines to run in families suggests that there’s likely an inherited component. Recently, a team of NIH-funded researchers, one of whom regularly suffered from migraines herself, found a gene that plays a part.

The clue that helped them to identify the rogue gene came from a family that suffers from both migraines and a rare sleep disorder, called familial advanced sleep phase syndrome. The syndrome disrupts their sleep cycle, causing family members to fall asleep early, about 7 pm, and rise around 4 am.

The researchers hunted for the cause of the sleep cycle disorder and discovered a mutation in the casein kinase I delta (CKIδ) gene. The gene produces an enzyme that’s important for brain signaling and for regulating our circadian rhythms. The particular mutation in this family seemed to reduce the activity of the CKIδ enzyme and made the researchers wonder whether the mutation was also responsible for causing migraines. To test the hypothesis, they engineered mice that carried the same mutation.

Just like the humans, the CKIδ mutant mice had disrupted sleep-wake cycles— but they were also more likely to suffer migraines compared to normal mice when given nitroglycerin. I admit, you can’t exactly ask a mouse if it has a headache. But because migraines cause a range of sensory issues, there are other physical signs the researchers could monitor in the mice. In this case, the CKIδ mutant mice became more sensitive to pain, temperature, and touch than normal mice. This mirrors the experience of many migraine sufferers.

The CKIδ mutant mice were also more vulnerable to a type of brain activity called cortical spreading depression—a wave of electrical silence that follows electrical stimulation. Brain cells called astrocytes from CKIδ mutants functioned differently from those from healthy mice, suggesting one possible mechanism through which the mutation wreaks havoc in the brain.

CKIδ affects several different proteins in the cell. The next step will be to tease apart which of these plays a role in triggering migraines. Once we understand how migraines begin, we have a better chance of identifying a new generation of drugs that can block that painful path.

Image via Peter Bernik/Shutterstock.com

Francis S. Collins, M.D., Ph.D. is the Director of the National Institutes of Health (NIH). In that role he oversees the work of the largest supporter of biomedical research in the world, spanning the spectrum from basic to clinical research. Dr. Collins is a physician-geneticist noted for his landmark discoveries of disease genes and his leadership of the international Human Genome Project, which culminated in April 2003 with the completion of a finished sequence of the human DNA instruction book. He served as director of the National Human Genome Research Institute at the NIH from 1993-2008.

FROM OUR SPONSORS
JOIN THE DISCUSSION
Close [ x ] More from GovExec
 
 

Thank you for subscribing to newsletters from GovExec.com.
We think these reports might interest you:

  • Sponsored by G Suite

    Cross-Agency Teamwork, Anytime and Anywhere

    Dan McCrae, director of IT service delivery division, National Oceanic and Atmospheric Administration (NOAA)

    Download
  • Data-Centric Security vs. Database-Level Security

    Database-level encryption had its origins in the 1990s and early 2000s in response to very basic risks which largely revolved around the theft of servers, backup tapes and other physical-layer assets. As noted in Verizon’s 2014, Data Breach Investigations Report (DBIR)1, threats today are far more advanced and dangerous.

    Download
  • Federal IT Applications: Assessing Government's Core Drivers

    In order to better understand the current state of external and internal-facing agency workplace applications, Government Business Council (GBC) and Riverbed undertook an in-depth research study of federal employees. Overall, survey findings indicate that federal IT applications still face a gamut of challenges with regard to quality, reliability, and performance management.

    Download
  • PIV- I And Multifactor Authentication: The Best Defense for Federal Government Contractors

    This white paper explores NIST SP 800-171 and why compliance is critical to federal government contractors, especially those that work with the Department of Defense, as well as how leveraging PIV-I credentialing with multifactor authentication can be used as a defense against cyberattacks

    Download
  • Toward A More Innovative Government

    This research study aims to understand how state and local leaders regard their agency’s innovation efforts and what they are doing to overcome the challenges they face in successfully implementing these efforts.

    Download
  • From Volume to Value: UK’s NHS Digital Provides U.S. Healthcare Agencies A Roadmap For Value-Based Payment Models

    The U.S. healthcare industry is rapidly moving away from traditional fee-for-service models and towards value-based purchasing that reimburses physicians for quality of care in place of frequency of care.

    Download
  • GBC Flash Poll: Is Your Agency Safe?

    Federal leaders weigh in on the state of information security

    Download

When you download a report, your information may be shared with the underwriters of that document.