Promising Practices Promising PracticesPromising Practices
A forum for government's best ideas and most innovative leaders.

What the Mouse Can Teach Us (And What It Can't)

Image via Yurchyks/

The humble laboratory mouse has taught us a phenomenal amount about embryonic development, disease, and evolution. And, for decades, the pharmaceutical industry has relied on these critters to test the safety and efficacy of new drug candidates. If it works in mice, so we thought, it should work in humans. But when it comes to molecules designed to target a sepsis-like condition, 150 drugs that successfully treated this condition in mice later failed in human clinical trials—a heartbreaking loss of decades of research and billions of dollars. A new NIH-funded study reveals why.

Sepsis is a life-threatening systemic infection. It can be caused by a variety of pathogens, including bacteria, viruses, and fungi. Serious consequences occur when tissues damaged by infection produce proteins sometimes called “alarmins” that send the immune system into overdrive. Traumatic injuries involving extreme blood loss or burns can set off the same dangerous response. To probe the molecular response to all of these triggers, the authors took periodic blood samples from 167 trauma (car crashes, falls) patients; from 244 patients with burns over at least 20% of their body; and from four healthy volunteers who had been injected with a low-dose bacterial toxin. Then they studied the activity of the genes in the white blood cells. Comparing the results, they found that of the 5,500 or so genes that responded to traumatic injury, 91% also played a role in burn response and recovery. And about 45% of these same genes were involved in recovery from the bacterial toxin exposure.

Mice, however, apparently use distinct sets of genes to tackle trauma, burns, and bacterial toxins—when the authors compared the activity of the human sepsis-trauma-burn genes with that of the equivalent mouse genes, there was very little overlap. No wonder drugs designed for the mice failed in humans: they were, in fact, treating different conditions!

But that doesn’t mean studying mice is useless. There’s still much the mouse might teach us. Mice, as the authors note, are more resilient to infection and mount a much more regulated immune response to pathogens than humans. While it takes relatively few bacteria in the bloodstream to make humans critically ill, it takes a million-fold more bacteria to sicken a mouse. Perhaps this is because mice nose around in some filthy places and can’t afford to overreact to every microbe? If we knew how these rodents limit the drama of their immune response, it might be useful for us humans.

But this study’s implications may well go beyond mice and sepsis. It suggests that we should not assume a mouse’s drug response will always accurately predict a human’s. It would be wise to monitor the activity of the genes and pathways of interest in humans and mice, to see whether a drug works the same way in the two species.

The new study provides more reason to develop better and more sophisticated models of human disease. More than 30 percent of all drugs successfully tested in animals fail in human trials. The NIH plans to commit $70 million over the next five years to develop “tissue chips”—miniature 3-D organs made with living human cells—to help predict drug safety and efficacy. Though this is high-risk research, these chips may ultimately provide better models of human disease and biology than the use of animals.

Image via Yurchyks/

Francis S. Collins, M.D., Ph.D. is the Director of the National Institutes of Health (NIH). In that role he oversees the work of the largest supporter of biomedical research in the world, spanning the spectrum from basic to clinical research. Dr. Collins is a physician-geneticist noted for his landmark discoveries of disease genes and his leadership of the international Human Genome Project, which culminated in April 2003 with the completion of a finished sequence of the human DNA instruction book. He served as director of the National Human Genome Research Institute at the NIH from 1993-2008.

Close [ x ] More from GovExec

Thank you for subscribing to newsletters from
We think these reports might interest you:

  • Sponsored by Brocade

    Best of 2016 Federal Forum eBook

    Earlier this summer, Federal and tech industry leaders convened to talk security, machine learning, network modernization, DevOps, and much more at the 2016 Federal Forum. This eBook includes a useful summary highlighting the best content shared at the 2016 Federal Forum to help agencies modernize their network infrastructure.

  • Sponsored by CDW-G

    GBC Flash Poll Series: Merger & Acquisitions

    Download this GBC Flash Poll to learn more about federal perspectives on the impact of industry consolidation.

  • Sponsored by One Identity

    One Nation Under Guard: Securing User Identities Across State and Local Government

    In 2016, the government can expect even more sophisticated threats on the horizon, making it all the more imperative that agencies enforce proper identity and access management (IAM) practices. In order to better measure the current state of IAM at the state and local level, Government Business Council (GBC) conducted an in-depth research study of state and local employees.

  • Sponsored by Aquilent

    The Next Federal Evolution of Cloud

    This GBC report explains the evolution of cloud computing in federal government, and provides an outlook for the future of the cloud in government IT.

  • Sponsored by Aquilent

    A DevOps Roadmap for the Federal Government

    This GBC Report discusses how DevOps is steadily gaining traction among some of government's leading IT developers and agencies.

  • Sponsored by LTC Partners, administrators of the Federal Long Term Care Insurance Program

    Approaching the Brink of Federal Retirement

    Approximately 10,000 baby boomers are reaching retirement age per day, and a growing number of federal employees are preparing themselves for the next chapter of their lives. Learn how to tackle the challenges that today's workforce faces in laying the groundwork for a smooth and secure retirement.

  • Sponsored by Hewlett Packard Enterprise

    Cyber Defense 101: Arming the Next Generation of Government Employees

    Read this issue brief to learn about the sector's most potent challenges in the new cyber landscape and how government organizations are building a robust, threat-aware infrastructure

  • Sponsored by Aquilent

    GBC Issue Brief: Cultivating Digital Services in the Federal Landscape

    Read this GBC issue brief to learn more about the current state of digital services in the government, and how key players are pushing enhancements towards a user-centric approach.

  • Sponsored by CDW-G

    Joint Enterprise Licensing Agreements

    Read this eBook to learn how defense agencies can achieve savings and efficiencies with an Enterprise Software Agreement.

  • Sponsored by Cloudera

    Government Forum Content Library

    Get all the essential resources needed for effective technology strategies in the federal landscape.


When you download a report, your information may be shared with the underwriters of that document.