Promising Practices Promising PracticesPromising Practices
A forum for government's best ideas and most innovative leaders.

Brown Fat, White Fat, Good Fat, Bad Fat

ARCHIVES
Patrick Seale, University of Pennsylvania School of Medicine Patrick Seale, University of Pennsylvania School of Medicine Brown fat cells (stained brown with antibodies against the brown fat-specific protein Ucp1) nestled in amongst white fat cells.

Fat has been villainized; but all fat was not created equal. Our two main types of fat—brown and white—play different roles. Now, two teams of NIH-funded researchers have enriched our understanding of adipose tissue. The first team discovered the genetic switch that triggers the development of brown fat, and the second figured out how the body can recruit white fat and transform it into brown.

Why would we want to change white fat into brown? White fat stores energy as large fat droplets, while brown fat has much smaller droplets and is specialized to burn them, yielding heat. Brown fat cells are packed with energy generating powerhouses called mitochondria that contain iron—which gives them their brown color. Infants are born with rich stores of brown fat (about 5 percent of total body mass) on the upper spine and shoulders to keep them warm. It used to be thought that brown fat disappeared by adulthood—but it turns out we harbor small reserves in our shoulders and neck.

In mice, brown fat does something remarkable: it burns more calories when mice are overfed, protecting them from obesity. (Don’t you wish eating a plate of fries did that for you?) Furthermore, mice genetically predisposed to have with extra brown fat are actually leaner and healthier. In humans, there is evidence that more brown fat is associated with a lower body weight. So, how might we increase our brown fat production?

The team led by the University of Pennsylvania figured out the switch for creating a brown fat cell—a protein called early B cell factor-2 (Ebf2). Comparing the active genes in brown and white fat cells, they discovered Ebf2 is present in larger quantities in brown fat. This protein seems to mark which genes will later be turned on to transform certain types of precursor cells into brown fat. When the team engineered mice lacking this protein, the animals had white fat cells on their upper back and spine rather than the typical brown. When the team expressed high levels of Ebf2 in white fat, these cells turned brown and consumed more oxygen—a sign they were producing more heat.

The second team, led by Harvard’s Joslin Diabetes Center, noted that mice have two types of brown fat: constitutive brown fat, which they have from birth, and “recruitable” brown fat, scattered throughout the muscles and white fat. When researchers engineered mice lacking a protein called Type 1A BMP-receptor (BMPR1A)—which is needed for the correct development of brown fat—the mice were born with just a tiny bit of constitutive brown fat on their back.

You would think that these mice would be terribly cold. Surprisingly, they kept a normal body temperature. How did they manage this feat?

The lack of brown fat apparently sends a signal via the brain to the recruitable fat cells, telling them to make the switch and transform into brown fat. The mice stayed warm, and the recruited brown fat even protected them from obesity.

In humans, too much abdominal white fat promotes heart disease, diabetes, and many other metabolic diseases. It would be potentially therapeutic if we could transform some of our white fat into brown. Determining which genes control the development of white and brown fat may be the first step toward developing game changing treatments for diabetes and obesity.

NIH funding: the National Institute of Diabetes and Digestive and Kidney Diseases; and the National Institute of General Medical Sciences

Francis S. Collins, M.D., Ph.D. is the Director of the National Institutes of Health (NIH). In that role he oversees the work of the largest supporter of biomedical research in the world, spanning the spectrum from basic to clinical research. Dr. Collins is a physician-geneticist noted for his landmark discoveries of disease genes and his leadership of the international Human Genome Project, which culminated in April 2003 with the completion of a finished sequence of the human DNA instruction book. He served as director of the National Human Genome Research Institute at the NIH from 1993-2008.

FROM OUR SPONSORS
JOIN THE DISCUSSION
Close [ x ] More from GovExec
 
 

Thank you for subscribing to newsletters from GovExec.com.
We think these reports might interest you:

  • Going Agile:Revolutionizing Federal Digital Services Delivery

    Here’s one indication that times have changed: Harriet Tubman is going to be the next face of the twenty dollar bill. Another sign of change? The way in which the federal government arrived at that decision.

    View
  • Cyber Risk Report: Cybercrime Trends from 2016

    In our first half 2016 cyber trends report, SurfWatch Labs threat intelligence analysts noted one key theme – the interconnected nature of cybercrime – and the second half of the year saw organizations continuing to struggle with that reality. The number of potential cyber threats, the pool of already compromised information, and the ease of finding increasingly sophisticated cybercriminal tools continued to snowball throughout the year.

    View
  • Featured Content from RSA Conference: Dissed by NIST

    Learn more about the latest draft of the U.S. National Institute of Standards and Technology guidance document on authentication and lifecycle management.

    View
  • GBC Issue Brief: The Future of 9-1-1

    A Look Into the Next Generation of Emergency Services

    View
  • GBC Survey Report: Securing the Perimeters

    A candid survey on cybersecurity in state and local governments

    View
  • The New IP: Moving Government Agencies Toward the Network of The Future

    Federal IT managers are looking to modernize legacy network infrastructures that are taxed by growing demands from mobile devices, video, vast amounts of data, and more. This issue brief discusses the federal government network landscape, as well as market, financial force drivers for network modernization.

    View
  • eBook: State & Local Cybersecurity

    CenturyLink is committed to helping state and local governments meet their cybersecurity challenges. Towards that end, CenturyLink commissioned a study from the Government Business Council that looked at the perceptions, attitudes and experiences of state and local leaders around the cybersecurity issue. The results were surprising in a number of ways. Learn more about their findings and the ways in which state and local governments can combat cybersecurity threats with this eBook.

    View

When you download a report, your information may be shared with the underwriters of that document.